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Possible neural coding with interevent intervals of synchronous firing
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Neural networks composed of excitable neurons with noise generate rich nonlinear dynamics with spa-
tiotemporal structures of neuronal spikes. Among various spatiotemporal patterns of spikes, synchronous firing
has been studied most extensively both with physiological experimentation and with theoretical analysis. In
this paper, we consider nonlinear neurodynamics in terms of synchronous firing and possibility of neural
coding with such synchronous firing, which may be used in the ‘‘noisy brain.’’ In particular, reconstruction of
a chaotic attractor modeling a dynamical environment is explored with interevent intervals of synchronous
firing from the perspective of nonlinear time series analysis and stochastic resonance.
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I. INTRODUCTION

It is widely believed that information in the brain is ca
ried by neuronal spikes or action potentials. But the probl
of how the information is encoded in these spikes rema
unsolved. The most commonly accepted hypothesis is
firing rates of spikes encode the information. However,
possibility of spatiotemporal spike coding on the basis
spike timing, interspike intervals~ISIs!, and mutual correla-
tion of spikes from different neurons is currently being e
plored from a viewpoint of nonlinear neurodynamics~see
Refs.@1,2# for background reviews!. In fact, a single neuron
has peculiar nonlinear dynamics with a threshold, which
be described by nonlinear dynamical systems like
Hodgkin-Huxley equations@3# and the FitzHugh-Nagumo
equations@4#; such nonlinear dynamics generates various
namical behaviors including the deterministic chaos@5#.

In this paper, the possibility of spatiotemporal spike co
ing is considered particularly from the standpoint of nonl
ear time series analysis@6#. To approach this problem, w
analyze response characteristics of a neural network c
posed of the FitzHugh-Nagumo neurons when they
forced by a chaotic stimulus that models dynamical in
from an environment. In particular, we study how the d
namical structure of the chaotic input is encoded into int
event intervals~IEIs!, where the event is defined by timing o
synchronous firing in the neural network.

II. IS THE CORTICAL NEURON AN INTEGRATOR OR A
COINCIDENCE DETECTOR?

Spike timing and ISIs of real neurons are highly variab
and irregular@7#. Whether variability and irregularity of neu
ronal spikes carry significant information or are just no
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that should be smoothed away for good estimation of fir
rates is an intriguing question. Related to this question,
problem of whether the cortical neuron serves as an inte
tor or a coincidence detector@8# has recently been revisite
as a very important research topic@7,9#. It is usually under-
stood that the integrator neuron and the coincidence dete
neuron contribute to rate coding and spatiotemporal sp
coding, respectively@1,9#.

In this light, theoretical analysis of ISI reconstructio
@10–13# is interesting because these results imply that a k
of spatiotemporal spike coding is possible even with the p
fect integrator neurons that generate spikes by integrating
input signalS(t) without any leak during interspike inter
vals; each interspike interval is equal to the ‘‘short-term
averaged 1/S(t) times the threshold@11#.

III. METHODS OF ATTRACTOR RECONSTRUCTION

Meeset al. @14# showed that deterministic chaos of squ
axon response can be detected by building a nonlinear
namical model directly from noisy electrophysiological da
without any a priori model. Applicability of the nonlinear
time series analysis to ISI data has been also intensi
explored by analyzing ISIs of various neuronal mod
stimulated by chaotic input@10–13#, where a chaotic system
is used as a model of a dynamical environment whose c
plex behavior is neither purely random nor perfectly predi
able. In the case of the perfect integrator neuron without
leak, Sauer@10# showed that the geometrical structure of
chaotic system can be reconstructed with delay coordin
of ISI sequence data.

A neuron fires a spike when the membrane poten
crosses a threshold. From the firing times of the neuro
spikes$T1 ,T2 , . . . ,TN%, the ISI sequence data can be o
tained as

$t i5Ti 112Ti , i 51,2, . . . ,N21%. ~1!
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With the ISI data, the dynamical structure of the chao
input is reconstructed in ad-dimensional delay-coordinat
space@15# as follows:

u~ i !5~ t i ,t i 21 ,t i 22 , . . . ,t i 2d11!. ~2!

In the present study, accuracy of the ISI reconstruction
interevent interval~IEI! reconstruction~see Sec. V! of cha-
otic dynamics is measured by the normalized prediction e
~NPE!. First, we divide the ISI or IEI data into two parts
From the first part of the data, a predictorf̃ :Rd→Rd, which
approximates the data dynamics asu( i 11)' f̃ „u( i )… is con-
structed. For the predictorf̃ , a local linear predictor@10,16#
is used in this paper. Then, for the second part of the d
nonlinear prediction is carried out. Namely, for a given init
stateu( i ), thes-step future stateu( i 1s) is predicted asũ( i
1s)5 f̃ s

„u( i )… with s iterations of the predictorf̃ . The NPE
E is finally calculated as the following normalized roo
mean-square error:

E5
^~ t i2t ĩ !

2&1/2

^~ t i2 t̄ !2&1/2
, ~3!

where t̃ i and t̄ are the predicted values of thei th ISI or IEI
and the average of$t i%, and^•& stands for the average ove
time series. In the following numerical experiments, the
construction dimensiond, the prediction steps, and the num-
ber of the dataN are fixed at (d,s,N)5(4,1,5001) unless
specified otherwise.

IV. NONLINEAR NEURODYNAMICS AND
RECONSTRUCTION WITH INTERSPIKE INTERVALS

Since leaky components inevitably exist in biologic
neurons of the real brain, effects of the leak on ISI rec
struction should be analyzed in order to consider the
reconstruction as a possible mechanism of neural codin
the brain.

Racicot and Longtin@11# studied ISI sequence data ge
erated from different neuronal models such as lea
integrate-and-fire neurons and clarified short-term determ
istic predictability of the ISI data. Segundoet al. @17# applied
the nonlinear analysis to ISI data recorded from synaptic
inhibited crayfish pacemaker neurons and categorized
discharge forms. Richardsonet al. @18# recorded ISI data
from a rat cutaneous mechanoreceptor neuron stimulate
chaotic input and reported that the deterministic structure
the chaotic input can be preserved in the ISI data. Suz
et al. @19# also found both numerically and experimenta
that significant determinism is detectable from the ISI d
generated by the leaky integrator neuron model and cric
wind receptor cells, which are stimulated by chaotic inp
Furthermore, Castro and Sauer@12# observed improvemen
of the ISI reconstruction by adding stochastic noise to
FitzHugh-Nagumo neuron with subthreshold chaotic inp
Castro and Sauer@13# considered reconstruction of chaot
dynamics with the period-parameter plots too.

The present study focuses on the result of Castro
02621
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Sauer@12# because the property is related to stochastic re
nance phenomena that may contribute to detection of w
input stimuli by biological systems@20,21# and possibly to
higher brain functions.

The FitzHugh-Nagumo~FHN! neuron model with noise is
described as follows@4,12#:

e v̇52v~v20.5!~v21!2w1S~ t !1j~ t !,

ẇ5v2w20.15,
~4!

where v is the membrane potential andw is the recovery
variable;j(t) is Gaussianwhite noise withE@j(t)#50 and
E@j(t)j(s)#52Dd(t2s) with the noise intensityD. The
neuron receives weaksubthreshold input S(t)50.075
10.0092x(t) from variablex of the Rössler equations@22#,
ẋ5t(2y2z), ẏ5t(x1ay), ż5t@bx1z(x2c)#, where
the parameter values are fixed at (a,b,c,t)
5(0.36,0.4,4.5,0.5). As reported by Castro and Sauer@12#,
the response characteristic of the FHN neuron shows a si
sharp minimum NPE on increasing the noise intensityD, at
which the optimal ISI reconstruction of chaotic dynamics
realized~see the ‘‘single’’ case of Fig. 1!.

V. NONLINEAR NETWORK DYNAMICS AND
RECONSTRUCTION WITH INTEREVENT INTERVALS

OF SYNCHRONOUS FIRING

Although reconstruction of an input attractor with ISI da
generated by a single neuron provides an intriguing mec
nism of temporal spike coding, global dynamics at the le
of neural networks rather than local dynamics at the leve
single neurons should be considered because neurons i
brain, especially in the cortex, interact with each other m
sively. For example, Watanabe and Aihara@23# showed that
neural networks composed of coincidence detector neu
generate rich dynamical phenomena with spatiotemp
structures of neuronal spikes, which include spatiotempo
chaos. Among various spatiotemporal spike patterns, s
chronous firing has been most extensively studied both

FIG. 1. NPE of ISI or IEI data generated by a network of t
FHN neurons with noise. The number of neurons is varied asK
51 ~single!, 20, 40, and 80.
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POSSIBLE NEURAL CODING WITH INTEREVENT . . . PHYSICAL REVIEW E 66, 026212 ~2002!
physiological experimentation~for example, see Refs
@24,25#! and by theoretical analysis~for example, see Refs
@25,26#!.

Here, we explore the possibility of extending the tempo
spike coding with ISI data to more robust spatiotempo
coding with interevent intervals data, where the event is
fined not by a single spike but by synchronous firing em
gent in the neural network.

Let us consider a neural network composed of globa
coupled neurons with noise, each of which is the same w
the FHN neuron of Eq.~4!. The network dynamics is given
as follows~see Fig. 2!:

e v̇ i52v i~v i20.5!~v i21!2wi1S~ t !

1
C

K (
j 51

K

~v j2v i !1j i~ t !, ~5!

ẇi5v i2wi20.15, ~6!

where (v i ,wi) are the state variables of thei th FHN neuron
for i 51, . . . ,K; j i is noise of thei th neuron withE@j i(t)#
50 and E@j i(t)j j (s)#52Dd(t2s)d( i 2 j ); and K is the
number of the neurons in the network. In this model, elec
cal connections with the coupling constantC are introduced.

In the network, each FHN neuron receives the comm
subthreshold chaotic inputS(t) and generates spike trains
firing times$T1( i ),T2( i ),T3( i ), . . . % for i 51,2, . . . ,K. The
network dynamics depends upon the coupling strengthC. If
the coupling is very weak, the neurons with noise tend to
almost independent of each other. With increasing the va
of C, we can observe synchronous firing due to netw
dynamics with interactions among neurons. We fix the va
of C at 0.05 in the following analysis. Synchronous firing
defined as coincidence of the incident spikes from more t
kK neurons (k represents the coincidence ratio! to the coin-
cidence detector neuron in Fig. 2 within a coincidence ti
window r. After firing, the coincidence detector neuron
absolutely refractory for a periodn.

FIG. 2. A schematic diagram of a network composed of
globally coupled FHN neurons with noise. The coincidence dete
neuron receives spike trains from all the FHN neurons and fi
when and only when a large enough number of incident spikes
received almost simultaneously. This coincidence detector neur
introduced as an observer for coincidence of input spikes, nam
synchronous firing in the network.
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We call the intervals between adjacent events of synch
nous firing as IEIs. With the IEI sequence data$t i ,i
51, . . . ,N21%, the chaotic determinism is analyzed by th
attractor reconstruction in the followingd-dimensional
delay-coordinate space:

u~ i !5~ t i ,t i 21 ,t i 22 , . . . ,t i 2d11!. ~7!

Figure 1 shows the NPE obtained from the IEI reconstr
tion by networks of neurons withK520 ,40, and 80. The
parameters for the coincidence detector neuron are se
(k,r,n)5(0.5,0.25,0.5). As the number of the neurons
creases fromK51 to K580, the range of optimal noise
intensities defined as NPE less than 0.5 widens significa
as shown in Fig. 3. This implies that the network structu
effectively facilitates the neural coding with synchronous fi
ing and suppresses noisy components in a way that dif
from population rate coding realized by a network structu
with inhibitory coupling@27#.

VI. CASE WITH SUPRATHRESHOLD INPUT

Next, we analyze a case ofsuprathreshold inputrather
than subthreshold input; namely,S(t)50.17510.0092x(t).
Figure 4 shows the NPE values obtained with thesuprath-
resholdchaotic input, where the parameters of the nonlin
prediction are set as (d,s,N)5(4,30,5001) and the param
eters for the neural networks and the coincidence dete
neuron are set as the same as in thesubthresholdcase. The
solid line represents the NPE of the ISI data obtained from
single neuron, whereas the other lines indicate the NPE
the IEI data obtained from networks of neurons withK52,
10, 20, and 40. For the ISI reconstruction by the single n
ron, the NPE monotonically increases as the noise inten
D increases. This means that, in the case ofsuprathreshold
input, noise in the neural dynamics simply deteriorates
reconstruction of the chaotic input.

As shown in Figs. 4 and 5, for the IEI reconstruction
the neural network model, the NPE monotonically decrea

e
r
s
re
is

ly,

FIG. 3. An optimal noise range with NPE less than 0.5 increa
as the number of the neurons increases fromK51 to K580.
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as the number of the neurons increases fromK51 to K
51008. This implies that the network structure contributes
improvement of the neural coding with synchronous firi
also for thesuprathresholdchaotic input and that better re
construction of the original chaotic dynamics is realized.
demonstrated in Fig. 6, a smooth geometrical structure
resembles the original Ro¨ssler attractor is well reconstructe
in the two-dimensional IEI space on the basis of IEI d
generated by a network of 1008 FHN neurons withD55
31028.

VII. DISCUSSION

Synchronous firing in the neural network composed of
globally coupled FHN neurons has been analyzed in
paper from the viewpoint of neural coding. Synchronizati
itself has been widely studied in many systems@28,29#.
Among various synchronous phenomena, the salient cha
teristic of the synchronous firing in the present model is t
the IEI sequence data take continuous and nonperiodic

FIG. 4. NPE of the ISI or IEI reconstruction forsuprathreshold
chaotic input. The solid line indicates the ISI reconstruction b
single neuron, whereas the other lines indicate the IEI recons
tions by networks composed of neurons withK52, 10, 20, and 40.

FIG. 5. NPE of the IEI reconstruction for the suprathresh
chaotic input withD5531028 when the number of the neuron
increases fromK51 to K51008.
02621
o

s
at

a

e
is

c-
t
l-

ues reflecting chaotic stimuli. Similar chaotic oscillation wi
synchronous firing is also observed by periodically stimul
ing a network composed of locally coupled FHN neuro
@30# with respect to coherence resonance phenomena@31#.

A kind of global coupling through electrical synapses
considered in this paper. Actually, rich electrical synapses
to distances of about 100mm are found especially betwee
cortical interneurons of fast-spiking cells and low-thresho
spiking cells and thought to contribute to the emergence
synchronization among such neurons@32#. It is probable that
spatial distribution of electrical coupling is dependent on d
tances between neurons. Further, a variety of chemical
apses also coexist with electrical ones@32#. Generally speak-
ing, local coupling and global coupling can produce differe
network dynamics as typically demonstrated by coupled m
lattices and globally coupled maps@29#. In this respect,
analysis on effects of the different network structures up
the IEI coding is an important future problem.

Another point to be carefully examined is a difference
the types of neurons. Both biological neurons and neuro
models are generally classified to class I and class II acc
ing to the repetitive firing characteristics@33–35#. Class-I
neurons and class-II ones can be usually characterized
saddle-node bifurcations and Hopf bifurcations, respectiv
@34,35#. The FHN neuron model is a typical example of
class-II neuron. On the other hand, there are many cort
neurons that are thought to be of class I@35#. It should be
noted that IEI coding has been also observed in a netw
composed of leaky integrate-and-fire neurons@36#, whose
response characteristics are similar to those of class-I n
rons. It is also an important future problem to consider
fects of the different neuronal types upon the IEI coding.

VIII. CONCLUSION

A neural network composed of the globally coupled FH
neurons with noise is introduced as a model that enco
dynamical information of chaotic input with IEI time serie
data. The numerical analysis demonstrated that the
tiotemporal neurodynamics can be used to realize a kind

a
c-

FIG. 6. Two-dimensional IEI reconstruction (t i ,t i 21) of the
Rössler attractor by the IEI data obtained from a network of 10
neurons withD5531028.
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neural coding with IEI data without fine tuning of the op
mal noise level, as Collinset al. @21# showed in a summing
stochastic resonance network with a kind of rate coding. T
neural coding with IEI data is more robust than that with I
data. These results imply the possibility that IEI neuro
data in the noisy brain retain dynamical information nec
sary for real-time estimation of time-dependent stimuli@37#.
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@22# O.E. Rössler, Phys. Lett.55A, 397 ~1976!.
@23# M. Watanabe and K. Aihara, Neural Networks10, 1353

~1997!.
-

8

@24# R. Eckhornet al., Biol. Cybern.60, 121 ~1988!; C.M. Gray
and W. Singer, Proc. Natl. Acad. Sci. U.S.A.86, 1698~1989!;
E. Vaadiaet al., Nature~London! 373, 515 ~1995!; A. Riehle
et al., Science278, 1950 ~1997!; S. Cardoso de Oliveira, A.
Thiele, and K-P. Hoffmann, J. Neurosci.17, 9248~1997!; P.N.
Steinmetzet al., Nature~London! 404, 187 ~2000!.

@25# E. Domany, J. L. van Hemmen, and K. Schulten,Models of
Neural Networks II~Springer, New York, 1994!.

@26# R.E. Mirollo and S.H. Strogatz, SIAM~Soc. Ind. Appl. Math.!
J. Appl. Math.50, 1645~1990!; C. van Vreeswijk, Phys. Rev
E 54, 5522~1996!; M. Diesmann, M-O. Gewaltig, and A. Aert
sen, Nature~London! 402, 529 ~1999!; N. Masuda and K.
Aihara, Phys. Rev. E64, 051906~2001!.

@27# D.J. Mar et al., Proc. Natl. Acad. Sci. U.S.A.96, 10450
~1999!.

@28# A. T. Winfree, The Geometry of Biological Time~Springer,
New York, 1980!; Y. Kuramoto,Chemical Oscillations, Waves
and Turbulence~Springer, Berlin, 1984!; L. Glass, Nature
~London! 410, 277~2001!; A. Pikovsky, M. Rosenblum, and J
Kurths, Synchronization: A Universal Concept in Nonlinea
Sciences~Cambridge University Press, Cambridge, Englan
2001!.

@29# K. Kaneko and I. Tsuda,Complex Systems: Chaos and Beyo
~Springer, Berlin, 2001!.

@30# Y. Shinohara, Phys. Rev. E65, 051906~2002!.
@31# H. Ganget al., Phys. Rev. Lett.71, 807 ~1993!; A. Pikovsky

and J. Kurths,ibid. 78, 775 ~1997!; A. Longtin, Phys. Rev. E
55, 868 ~1997!; S. Tanabeet al., ibid. 60, 2182~1999!.

@32# L.S. Benardo, J. Neurophysiol.77, 3134~1997!; M. Galarreta
and S. Hestrin, Nature~London! 402, 72 ~1999!; J.R. Gibson,
M. Beierlein, and B.W. Connors,ibid. 402, 75 ~1999!; G.
Tamás et al., Nat. Neurosci.3, 366 ~2000!; M. Bierlein, J.R.
Gibson, and B.W. Connors,ibid. 3, 904 ~2000!.

@33# A.L. Hodgkin, J. Physiol.~London! 107, 165 ~1948!.
@34# J. Rinzel and B. Ermentrout, inMethods in Neuronal Model-

ing, 2nd ed., edited by C. Koch and I. Segev~MIT, Cambridge,
1998!, pp. 251–291; C. Koch,Biophysics of Computation~Ox-
ford University Press, New York, 1999!; E. Izhikevich, Int.
J. Bifurcation Chaos10, 1171~2000!.

@35# H. R. Wilson,Spikes, Decisions, and Actions~Oxford Univer-
sity Press, New York, 1999!.

@36# N. Masuda and K. Aihara, Phys. Rev. Lett.88, 248101~2002!.
@37# W. Bialek et al., Science252, 1854~1991!.
2-5


